On some numerical radius inequalities for Hilbert space operators

نویسندگان

چکیده

This article is devoted to studying some new numerical radius inequalities for Hilbert space operators. Our analysis enables us improve an earlier bound due Kittaneh. It shown, among other, that if $A\in \mathcal{B}(\mathcal{H})$, then \[ \frac{1}{8}\left( {{\left\| A+{{A}^{*}} \right\|}^{2}}+{{\left\| A-{{A}^{*}} \right\|}^{2}} \right)\le \omega ^{2}\left( A \right) \le \left\| \frac{{{\left| \right|}^{2}}+{{\left| {{A}^{*}} \right|}^{2}}}{2} \right\|-m\left( {{\left( \frac{\left| \right|-\left| \right|}{2} \right)}^{2}} \right ). \] Отримані нові нерівності для числового радіуса операторів у гільбертовім просторі. Зокрема, покращено попередній результат Кіттане. Показано, що B(H)$,

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

extend numerical radius for adjointable operators on Hilbert C^* -modules

In this paper, a new definition of numerical radius for adjointable operators in Hilbert -module space will be introduced. We also give a new proof of numerical radius inequalities for Hilbert space operators.

متن کامل

Sharper Inequalities for Numerical Radius for Hilbert Space Operator

We give several sharp inequalities for the numerical radius of Hilbert space operators .It is shown that if A and B are bounded linear operators on complex Hilbert space H , then 1 2 1 2(1 ) 2(1 ) 2 2 2 2 1 ( ) 2 ( ) 2 r r r r r r w A B A B A B A B α α α α − − − ∗ ∗ ⎛ ⎞ + ≤ + + + + + ⎜ ⎟ ⎝ ⎠ , for 0<r 1 ≤ and ( ) 1 , 0 ∈ α , and if ( ) n A M ∈ , then 2 1 ( ) 4 w A ≤ ( ) 2 2 A A A A ∗ ∗ + + − , ...

متن کامل

Some Lower Bounds for the Numerical Radius of Hilbert Space Operators

We show that if T is a bounded linear operator on a complex Hilbert space, then 1 2 ‖T‖ ≤ √ w2(T ) 2 + w(T ) 2 √ w2(T )− c2(T ) ≤ w(T ), where w(·) and c(·) are the numerical radius and the Crawford number, respectively. We then apply it to prove that for each t ∈ [0, 12 ) and natural number k, (1 + 2t) 1 2k 2 1 k m(T ) ≤ w(T ), where m(T ) denotes the minimum modulus of T . Some other related ...

متن کامل

Further inequalities for operator space numerical radius on 2*2 operator ‎matrices

‎We present some inequalities for operator space numerical radius of $2times 2$ block matrices on the matrix space $mathcal{M}_n(X)$‎, ‎when $X$ is a numerical radius operator space‎. ‎These inequalities contain some upper and lower bounds for operator space numerical radius.

متن کامل

New Reverse Inequalities for the Numerical Radius of Normal Operators in Hilbert Spaces

Let (H ; 〈·, ·〉) be a complex Hilbert space and T : H → H a bounded linear operator on H. Recall that T is a normal operator if T T = TT . Normal operator T may be regarded as a generalisation of self-adjoint operator T in which T ∗ need not be exactly T but commutes with T [5, p. 15]. An equivalent condition with normality that will be extensively used in the following is that ‖Tx‖ = ‖T ∗x‖ fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Methods of Functional Analysis and Topology

سال: 2021

ISSN: ['2415-7503', '1029-3531']

DOI: https://doi.org/10.31392/mfat-npu26_2.2021.07